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Abstract. Let R be an associative ring with unit. An element e € R is said to he
a near idempotent if €™ is an idempotent for some positive integer 7. In this paper
conditions on R which are equivalent to the condition that R has near idempotents
as all its elements are obtained.
2001 Mathematics Subject Classification: primary 16E50; secondary 16099
1 Introduction
All rings considered in this paper are associative with unit. Given a ring R, an
element e € A is said to be a near idempotent if e is an idempotent for some
- positive integer n. Clearly, every idempotent is a near idempotent. We say that R
.

1s Buler if every element of R is a near idempotent. If there exists a fixed positive

.

integer 7. such that 2™ is an idempotent for every z € R, then R is said to be
ezact-Euler. It is clear that an exact-Euler ring is Euler.
An element z € R is said to be strongly m-regular if there exist y &€ K and a

positive integer n such that 7% = "y and zy = yz (see [1]). In the case where

n=1, z is said to be strongly regular. R is said to be a strongly -regular ring if

all its elements are strongly m-regular.

For a ring R we shall use Id(R) and U(R) to denote the set of idempotents

and the set of units of R, respectively. The set of all nilpotent elements of & shall

be denoted by Nil(R). In this paper we show that R is Euler iff R is strongly
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m-regular and U(R) is a torsion group. We also show that R is exact-Euler iff B is
strongly 7-regular and Nil(R), U(R) are of bounded index. As a matter of inferest
we also give some results related to (s, 2)-rings.
2 Some Preliminaries
Theorem 2.1 Let R be a strongly n-reqular ring. Then for each x € R, there
erists a positive integer n such that ™ = eu = ue for some e Id(R) and some
u e U(R).

o

Proof. Let x € R. Since R is strongly 7-regular, it follows that there exists a
positive integer n and an element y € R such that 7" = ="y and 2y = yz. Then

T n+2,2 2n

o xn:-iy = r y Cei= oy yn — anj{,fn;’tn.

Let € = 2™y". Then €? = (2"y"z™)y" = z"y" = ¢ and e commutes with z and y.

Note that

4 1. n T
zye = wy(z"y") = (2" y)y"t = 2"y = e (1)

and
:{;Tbe e xﬁ{xﬁyn} e :Cﬁ (\/2}

Let f =e+z(1 — ¢). Since

"= le+z(l—e)" =" +2"(1 — &)
= e+z"(l—¢€)=c¢ {(by (2}),

then f is a near idempotent. Let v = ze + (1 — e) and w = ye + {1 —¢). Then

wy = vw=ze+ (1 ~e¢)llye+ (1 ~¢)]
= zye+(l—e)=ec+ (1l —¢) (by (1))

I

Thus v is a unit. Note that

I3 r g NIT / VY
fo=vf = [e+(1-e)le+2(l—¢)
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Then since f™ = e, it follows that 2" = ey = e where ¢ = " Is a unit, O

In the case where n = 1 in the proof of Theorem 2.1 (that is, z is strongly

regular), then f = ¢ and we have the following:

Proposition 2.2 Let R be g ring. If z is a strongly reqular element of R, then

T = eu = ue for some e € [d(R) and some u € U(R).
We also note the following necessary condition for Euler rings.

Proposition 2.3 If R is an Euler ring, then U(R) s a torsion group.

Proof. Let w € U(R). Since every element of R is a near idempotent, there exists

a positive integer n such that »" is an idempotent. Then " = y" and hence,

7t

Ty e —t
Jurz 7 - Unﬂ o 1

1 2n, -n
Uy o=y :

= U

Since u is arbitrary in U(R), it follows that [/ (R) is a torsion group. O

3 Euler rings

The main result in this section is as follows:

Theorem 3.1 Let R be g ring.  Then R is Euler if and only of R 1s strongly

m-reqular and U(R) is a torsion group.

Proof. Suppose that R is Euler. By Proposition 2.3, it follows readily that U(R)

§ a torsion group. Now let 2 € R and let 1 be 2 positive integer such that z% is

Yo

i

an idempotent. Let y = 2™ Then 7z y = z" and zy = yz. Hence R is strongly
m-regular.
Conversely, suppose that R is strongly 7-regular and U(R) is a torsion group.

Let z € K. By Theorem 2.1, there exists a positive integer n such that



for some idempotent e € Id(R) and some unit « € [/ (R). Since U(R) is a torsion
group, there exists a positive integer m such that u™ = 1. Then ™" — ey = ¢
is an idempotent of R. Since z is arbitrary in R, it follows that every element of

R 1s a near idempotent. O

As a consequence of Theorem 3.1 we have the following:

Corollary 3.2 A subring of an Euler ring 18 also Euler.

Proof. Let R be an Euler ring and S a subring of R. For any z € S < R, there

ar
exists a positive integer 7 such that 2" € /d(R). But 2" € S since S is a subring
p A1) g

of R. Hence, 2™ € Id(S) and it follows that S is also Euler. O
It is known that a subring of a strongly m-regular ring R is not necessarily
strongly 7-regular. However, if in addition [/ (R) is torsion, then we have the

following:

Corollary 3.3 Let R be a sirongly m-reqular ring with U(R) torsion. Then any

subring of K s also strongly m-regular.

Proof. Let S be a subring of F. Since R is Euler (by Theorem 3.1), it follows from
Corollary 3.2 that S is also Euler. Hence, S is strongly m-reguiar by Theorem
3.1. 0

Recall that a ring R is said to be periodic if for each z € R there are integers
m, n > 1 such that m s n and 2™ = z*. If R is an Euler ring :t 1s easy to see
that £ is periodic. The converse is also true as has been shown in 2, Lemma 1].

In view of this and Theorem 3.1 we have the following corollary:

¥

Corollary 3.4 For a ring R the following conditions are equivalent:

{a) R 1s Euler;

(b) R is periodic;

(¢) R is strongly n-reqular and U(R) is a torsion group.
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4 Exact-Euler rings
We obtain necessary and sufficient conditions for a ring to be exact-Euler as follows:

Theorem 4.1 A ring R is exact-Euler if and only if R is strongly m-reqular and

Nil(R), U(R) are of bounded inder.

Proof. Suppose first that R is exact-Euler. Then R is Euler and it follows readily
from Theorem 3.1 that R is strongly m-regular. Let u ¢ U(R) and z € Nil(R).
Since R is exact-Fuler, there is a fixed positive integer n such that u”, " ¢ Id(R).
Then u" = 4/*"™" = 27y~ = 4y = 1. Sipee u is arbitrary in U(R), it follows
that U(R) is of bounded index. Let m be the smallest positive integer such that
™ = 0. Since 2" = 77 for any positive integer £ > 1, then m = n. Hence, Nil(R)
is of bounded index.

Conversely, suppose that R is strongly 7-regular and Nil(R), U(R) are of
bounded index w, m, respectively. Let z € R. Then there exist g positive in-
teger n and an element y € R which commutes with z such that z™ = g7+ y; thus

= 2"y Then since

1k 2r-tk : +k-1 +1,8 ) n+l n+k+2 q-bS
:er = pon Jﬁyn = "t k, ";/)?; n i\J:n gy/}yn 1 e g dntEt :gr; 2
- e 2tk ntk _ nebkeely fibk—1_ n-ky
[ ceezmop y m= f\z’ g ;;

for any positive integer k, we may assume that n > w. Now since (z"y")? =
;c’”z;)” = z"y", we have 1""’“@/” € Id(R) and hence, so is 1 — 2y Note that

(1 — g7y’ }’“ = "1 = a"y") = 0. Thus, [z(1 - z"y")]¥ = 0 which gives us
= 0. It follows that z¥ = grtwyn — (2" %y™); that is, £¥ is

z‘ggaé&i By Proposition 2.2, 2% = ey = ue for some ¢ € Id(R) and some

u € U(R). Thus, z9™ = ewmywm _ , ¢ Id(R). Since x is arbitrary in R, this
shows that R is exact-Euler. &

From the proof of Theorem 4.1 we have the following:

Proposition 4.2 Suppose that R is 4 strongly w-regular ring and Nl(R), U(R)

are bounded above by w, m > 1 respectively. Then z%™ € [d( R) for each r € R,
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As a consequence of Propaosition 4.2 we have an algebraic proo? of the followi ing

number-theoretic result:
Corollary 4.3 Let m = p® Wt = 2 where the p; are distinct primes and

o 21(i=1...,n). Let k = max {og, oo} and let ¢ denote Euler’s phi-

E

function. Then 2™ ¢ I1d(7Z,.} for each z € Do,

Proof. It is well-known that L, is a strongly m-regular ring. Clearly, Nil(Z,,)
is bounded above by k and U(Z Zpm) by ¢(m). The result then follows by applying

Proposition 4.2. .

5 Some related results

A ring R is said to be unit regular if for every x € R, there exists a unit ue R
such that zuz = z. In 3], Ehrlich showed that if B is unit regular and 2 is a
unit of R, then every element of R is a sum of two units of K. A ring R in which
every element of R is a sum of two units of R is said to be an (s,2)-ring [3] (see
also [4]). We say that R is an (8,2)-m-ring if for each element z € R there is an
integer n = 1 such that 2 is a sum of two units of R, We also say that R is an
ezact-(s, 2)-m-ring if there is a fixed integer > 1 such that z™ is a sum of two

units of K for every z € R. Clearly, an exact-( (3, 2)-m-ring is (s, 2)-.

We obtain the following result:

Theorem 5.1 (a) Let R be a strongly n-reqular ring. Then F is an (s,2)-1-

»

ring if and only if every element in Id(R) is a sum of two units of R. In

particular, if 2 € U(R), then R is an (s, 2)-m-ring.
(b) Let R be an ezact-Euler ring. Then R is an ezact- (5, 2)-m-ring if and d only if

every element in Id( (R) is a sum of two units of . In particular, if 2 € U(R)
7y . e i),

then R is an ezact-(s,2)-x T -ring.

Proof,

(a) Let z € R. By Theorem 2.1, there is a positive integer n such that 2" = ey — ue

e
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for some e € Id(R) and some u € U(R). Thus, R is an (5,2)-m-ring if each
e € Id(R) is a sum of two units of R. The converse of this is clearly true. Now
suppose that 2 € U(R). Since 2e — 1 € U(R) for each e € Id( ) and 2™ = eu, we
have 77 = 277(1 + (2e — 1))u is a sum of two units of A.

(b} The necessity part of the first assertion is clearly true. For the converse, we only
need to observe that there is a fixed positive integer n such that 2" = ¢ € J d(R)

%

for each v € R. The final assertion in part (b) can be obtained by applying part

(a) and the first assertion in this part.
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